

Trench IGBT Modules

SKM 200 GARL 066 T

Features

- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- INVERTER

Remarks

- Case temperature limited to T_c
 =125°C max, recommended T_{op}
 = -40..+150°C
- Recommended T_{op} = -40..+150°C
- T_{vj} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability

Absolute	Maximum Ratings	= 25°C, unless otherwise specified			
Symbol	Conditions		Values	Units	
IGBT				<u>.</u>	
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 175 ^{\circ}\text{C}$		600	V	
I _C	T _j = 175 °C	T _c = 25 °C	280	Α	
		$T_c = 80 ^{\circ}C$	210	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; VCES < 600 V	T _j = 150 °C	6	μs	
Inverse I	Diode		·		
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$	27	Α	
		T _c = 80 °C	20	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		40	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	95	Α	
Freewhe	eling Diode				
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$	270	Α	
		$T_c = 80 ^{\circ}C$	200	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1620	Α	
Module	•		·		
I _{t(RMS)}			500	Α	
T _{vj}			- 40 + 175	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3.2 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,5	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,7	4,5	mΩ
		T _j = 150°C		5	6,5	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V			1,45	1,9	V
		T _j = 150°C _{chiplev.}		1,7	2,1	V
C _{ies}				12,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,76		nF
C _{res}				0,36		nF
Q_G	V _{GE} = -8V+15V			2254		nC
R _{Gint}	T _j = 25 °C			1		Ω
t _{d(on)}				93		ns
t _r	$R_{Gon} = 1 \Omega$	$V_{CC} = 300V$		113		ns
E _{on}	di/dt = 1700 A/μs	I _C = 200A		2,24		mJ
t _{d(off)}	$R_{Goff} = 1 \Omega$	T _j = 150 °C		317		ns
t _f	di/dt = 2000 A/µs	$V_{GE} = -8V/+15V$		102		ns
E _{off}				7,89		mJ
$R_{th(j-c)}$	per IGBT			0,21		K/W

SEMITRANS[®] 5

Trench IGBT Modules

SKM 200 GARL 066 T

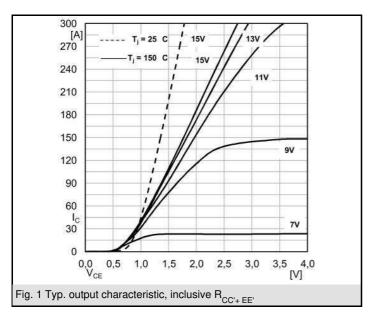
Features

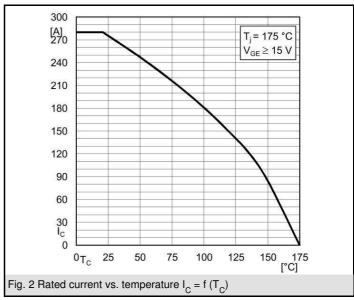
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

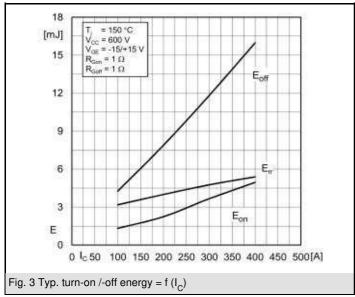
Typical Applications*

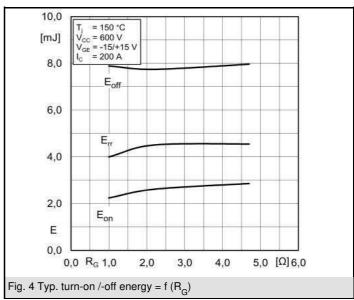
- UPS
- INVERTER

Remarks


- Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C
- Recommended T_{op} = -40..+150°C
- T_{vi} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability


Characte	ristics					
Symbol	Conditions	I	min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	$I_{Fnom} = 20 \text{ A}; V_{GE} = 0 \text{ V}$	T _j = 25 °C _{chiplev.}		1,45	1,7	V
		T _j = 150 °C _{chiplev.}		1,45	1,7	V
V_{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		22,5	30	mΩ
		T _j = 150 °C		27,5	35	mΩ
I _{RRM}	I _F = 20 A	T _j = 150 °C				Α
Q_{rr}						μC
E _{rr}	$V_{GE} = -8 \text{ V}; V_{CC} = 300 \text{ V}$					mJ
$R_{th(j-c)D}$	per diode			3		K/W
Free-whe	eling diode					
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V			1,4	1,6	V
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,3	1,45	V
V_{F0}		T _j = 25 °C		0,95	1	V
		T _j = 150 °C		0,85	0,9	V
r _F		T _j = 25 °C		2,2	3	V
		T _j = 150 °C		2,1	2,7	V
I _{RRM}	I _F = 200 A	T _j = 150 °C		175,8		Α
Q_{rr}	di/dt = 2000 A/μs			12		μC
E _{rr}	$V_{GE} = -15/+15 \text{ V}; V_{CC} = 300 \text{ V}$			4		mJ
R _{th(j-c)FD}	per diode			0,39		K/W
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					310	g
Tempera	ture sensor	•				•
R ₁₀₀	T_s =100°C (R_{25} =5k Ω)			493±5%		Ω
						K


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

